Accuracy and limitations of vector flow mapping: left ventricular phantom validation using stereo particle image velocimetory
نویسندگان
چکیده
BACKGROUND The accuracy of vector flow mapping (VFM) was investigated in comparison to stereo particle image velocimetry (stereo-PIV) measurements using a left ventricular phantom. VFM is an echocardiographic approach to visualizing two-dimensional flow dynamics by estimating the azimuthal component of flow from the mass-conservation equation. VFM provides means of visualizing cardiac flow, but there has not been a study that compared the flow estimated by VFM to the flow data acquired by other methods. METHODS A reproducible three-dimensional cardiac blood flow was created in an optically and acoustically transparent left-ventricle phantom, that allowed color-flow mapping (CFM) data and stereo-PIV to be simultaneously acquired on the same plane. A VFM algorithm was applied to the CFM data, and the resulting VFM estimation and stereo-PIV data were compared to evaluate the accuracy of VFM. RESULTS The velocity fields acquired by VFM and stereo-PIV were in excellent agreement in terms of the principle flow features and time-course transitions of the main vortex characteristics, i.e., the overall correlation of VFM and PIV vectors was R = 0.87 (p < 0.0001). The accuracy of VFM was suggested to be influenced by both CFM signal resolution and the three-dimensional flow, which violated the algorithm's assumption of planar flow. Statistical analysis of the vectors revealed a standard deviation of discrepancy averaging at 4.5% over the CFM velocity range for one cardiac cycle, and that value fluctuated up to 10% depending on the phase of the cardiac cycle. CONCLUSIONS VFM provided fairly accurate two-dimensional-flow information on cardio-hemodynamics. These findings on VFM accuracy provide the basis for VFM-based diagnosis.
منابع مشابه
Evaluation of diastolic blood flow dynamic of the left ventricle in dogs with mitral valve regurgitation using vector flow mapping
Mitral valve regurgitation (MVR) is a common valvular disease in dogs. Hydrokinetic evaluation of the blood flow within the ventricles has become possible by vector flow mapping (VFM), which shows the blood flow within the ventricles in vector and vortex flows. Blood flow within the left ventricle of MVR dogs was compared at different stages of MVR and to that of normal dogs. 14 normal dogs and...
متن کاملCardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics
BACKGROUND The development of clinically applicable fluid-structure interaction (FSI) models of the left heart is inherently challenging when using in vivo cardiovascular magnetic resonance (CMR) data for validation, due to the lack of a well-controlled system where detailed measurements of the ventricular wall motion and flow field are available a priori. The purpose of this study was to (a) d...
متن کاملA posteriori accuracy estimation of ultrasonic vector-flow mapping (VFM)
ABSTRACT A novel method, called a posteriori "VFM accuracy estimation" (VAE), for resolving an intrinsic VFM problem is proposed. The problem is that VFM uncertainty can easily vary according to blood flows through an echocardiographic imaged plane (i.e., "through-plane" flows), and it is unknown. Knowing the VFM uncertainty for each patient will make it possible to refine the quality of VFM-ba...
متن کاملIn-Vitro Validation of Phase Contrast MRI in a Stenotic Phantom Under Steady Flow Using PIV
Introduction: Blood flow dynamics has an important role in atherosclerosis initiation, progression, and thrombosis leading to occlusive arterial diseases [1]. Since the development of Phase Contrast MRI (PC-MRI), it has been widely used to measure the velocity and flow in blood vessels. Accuracy of the PC-MRI velocity measurements in a 1.5T scanner has previously been evaluated using Laser Dopp...
متن کاملTarget-free Stereo PIV: a novel technique with inherent error estimation and improved accuracy
A novel, accurate and simple stereo particle image velocimetry (SPIV) technique utilising three cameras is presented. The key feature of the new technique is that there is no need of a separate calibration phase. The calibration data are measured concurrently with the PIV data by a third paraxial camera. This has the benefit of improving ease of use and reducing the time taken to obtain data. T...
متن کامل